Precalculus

2-08 Graphs of Rational Functions

Intercepts

- *x*-int: let _____
 - \circ Numerator = 0
- y-int: let _____

Find the intercepts of $f(x) = \frac{3x^2 - 1}{x}$

To graph rational functions

- 1. Find _____
- 2. Find _____
- 3. Graph _____as dotted lines
- 4. Create ______of values around asymptotes
- 5. _____points
- 6. Draw cures starting near an ______and ending near another asymptote Don't cross _____
- 7. Put any required ______. Check the _____

Graph $f(x) = \frac{3x^2+1}{x}$

Graph
$$f(x) = \frac{3x}{x^2 + x - 2}$$

Find the function given a graph

Use the x-intercepts and multiplicity to get factors of ______

a. If cross x-axis: multiplicity 1 or 3

b. If touch but not cross: multiplicity 2 or 4

2. Use vertical asymptotes to get factors of _____

a. If 1 end goes up and 1 down: multiplicity 1

b. If both ends go same direction: multiplicity 2

3. Use any other point to get _____factor, *a*

Find the function

